Delicious Apples
Time Limit: 5000/3000 MS (Java/Others) Memory Limit: 524288/524288 K (Java/Others)
Total Submission(s): 199 Accepted Submission(s): 54
Problem Description There are n apple trees planted along a cyclic road, which is L metres long. Your storehouse is built at position 0 on that cyclic road. The ith tree is planted at position xi, clockwise from position 0. There are ai delicious apple(s) on the ith tree. You only have a basket which can contain at most K apple(s). You are to start from your storehouse, pick all the apples and carry them back to your storehouse using your basket. What is your minimum distance travelled?1≤n,k≤105,ai≥1,a1+a2+...+an≤1051≤L≤1090≤x[i]≤L There are less than 20 huge testcases, and less than 500 small testcases.
Input
First line: t, the number of testcases. Then t testcases follow. In each testcase: First line contains three integers, L,n,K. Next n lines, each line contains xi,ai.
Output
Output total distance in a line for each testcase.
Sample Input
2 10 3 2 2 2 8 2 5 1 10 4 1 2 2 8 2 5 1 0 10000
Sample Output
18 26
Source
题目链接: 题目大意:有一个长为L的环。n个苹果树,一个篮子最多装k个苹果,装完要回到起点卸下再出发。给出n个苹果树顺时针的位置及苹果的个数。求摘全然部苹果走的最小路程 题目分析:显然。仅仅有在某种特殊条件下,即两側都还有苹果且能够一次装完且最后的苹果都离起点比較远。这样的情况下。我们直接绕圈可能会更优,也就是说整圈最多绕一次。因此我们能够先对两边贪心。题目的数据显示苹果的数量最多就1e5,显然我们能够把苹果“离散”出来,用x[i]记录第i个苹果到起点的位置。然后对位置从小到大排序,先选择路程小的。选择的时候用dis[i]记录单側装了i个苹果的最小路程,类似背包计数的原理。答案要乘2,由于是来回的,最后在k>=i时。枚举绕整圈的情况,szl-i表示仅仅走左边採的苹果数,szr - (k - i)表示仅仅走右边採的苹果树。画个图就能看出来了。注意右边这里可能值为负。要和0取最大,然后答案就是(disl[szl-i] + disr[szr - (k - i)])* 2 +L,这里事实上绘图更加直观。最后取最小就可以,注意有几个wa点,一个是要用long long。二是之前说的出现负数和0取大,三是每次要清零
#include#include #include #include #define ll long longusing namespace std;int const MAX = 1e5 + 5;int L, n, k;ll x[MAX], disl[MAX], disr[MAX];vector l, r;int main(){ int T; scanf("%d", &T); while(T--) { memset(disl, 0, sizeof(disl)); memset(disr, 0, sizeof(disr)); l.clear(); r.clear(); scanf("%d %d %d", &L, &n, &k); int cnt = 1; for(int i = 1; i <= n; i++) { ll pos, num; scanf("%lld %lld", &pos, &num); for(int j = 1; j <= num; j++) x[cnt ++] = (ll) pos; //离散操作 } cnt --; for(int i = 1; i <= cnt; i++) { if(2 * x[i] < L) l.push_back(x[i]); else r.push_back(L - x[i]); //记录位置 } sort(l.begin(), l.end()); sort(r.begin(), r.end()); int szl = l.size(), szr = r.size(); for(int i = 0; i < szl; i++) disl[i + 1] = (i + 1 <= k ? l[i] : disl[i + 1 - k] + l[i]); for(int i = 0; i < szr; i++) disr[i + 1] = (i + 1 <= k ? r[i] : disr[i + 1 - k] + r[i]); ll ans = (disl[szl] + disr[szr]) * 2; for(int i = 0; i <= szl && i <= k; i++) { int p1 = szl - i; int p2 = max(0, szr - (k - i)); ans = min(ans, 2 * (disl[p1] + disr[p2]) + L); } printf("%I64d\n", ans); }}